Molecular landscape of the hematopoietic stem cell cradle – Science Codex

Researchers from the group of Catherine Robin at the Hubrecht Institute characterized the molecular landscape of the aorta that supports the generation of the first Hematopoietic Stem Cells (HSCs) in the embryo. Such HSCs are responsible for the constant replenishment of all blood cells throughout life. The researchers investigated which genes and regulatory pathways were active in the aorta of zebrafish, chicken, mouse and human embryos at the time of HSC formation. By comparing the different species, they uncovered the complexity of the aortic microenvironment landscape and the finetuning of various factors interplaying to control HSC generation both in time and space in vivo. Understanding the regulatory function of the local environment where HSCs are formed will pave the way for improved HSC production in vitro and clinical cell therapy for blood related diseases. The results are presented in the scientific journal Blood.

Hematopoietic stem cell need for the clinic

The constant production of short-lived hematopoietic cells, or blood cells, throughout life relies on a small number of hematopoietic stem cells (HSCs) present in the bone marrow in adults. Defective HSCs lead to various blood-related disorders and cancers that are partly treated by HSC transplantations. Since decades, efforts have been made to generate bona fide HSCs in vitro to circumvent the limited supply of donor compatible HSCs for clinical use. Despite recent progress, the culture protocols for HSCs in the lab remain sub-optimal in mimicking the physiological HSC surrounding microenvironment or niche. Such a niche is needed
Source…