Feeding off fusion or the immortalization of tumor cells – EurekAlert


IMAGE: image illustrating the mitochondrial fusion of the Drosophila tumor cells in red, blue staining showing tumor cell nuclei. view more 

Credit: ©Knoblich lab/IMBA

Worldwide, cancer is the second leading cause of death – in 2018 alone, it claimed approximately 9.6 million lives, or one in six deaths. The development of cancer is incredibly complex and is controlled by an interplay of various factors – only recently, it became clear that the majority of human cancers such as cervical, gastrointestinal and breast among others, originate from adult stem cells becoming deregulated. These adult stem cells are present in many of our organs, where they provide a constant supply of cells to replace old and dead cells. Identifying the mechanisms of how these developmentally tightly regulated stem cells break free from their regulations is an important topic within the scientific community, including the Knoblich lab at IMBA.

One key step in tumorigenesis are the mechanics driving tumor cell initiation, which trigger their fate in becoming tumorigenic. They have, thus far, mainly been studied at gene regulation levels, by researching tumor suppressor genes MYC, p53 or KRAS. Metabolic changes within tumor cells are a well-known characteristic, but whether these are a consequence or the cause of tumor cell immortalization